Member Only Content
To access all features, please consider upgrading to full Membership.
AI Ecosystem Intelligence Explorer
21 of 40 articles
One Token to Fool LLM-as-a-Judge
Generative reward models (also known as LLMs-as-judges), which use large language models (LLMs) to evaluate answer quality, are increasingly adopted in reinforcement learning with verifiable rewards (RLVR). They are often preferred over rigid rule-based metrics, especially for complex reasoning tasks involving free-form outputs. In this paradigm, an LLM is typically prompted to compare a candidate answer against a ground-truth reference and assign a binary reward indicating correctness. Despite the seeming simplicity of this comparison task, we find that generative reward models exhibit surprising vulnerabilities to superficial manipulations: non-word symbols (e.g., ”:” or ”.”) or reasoning openers like “Thought process:” and “Let’s solve this problem step by step.” can often lead to false positive rewards. We demonstrate that this weakness is widespread across LLMs, datasets, and prompt formats, posing a serious threat for core algorithmic paradigms that rely on generative reward models, such as rejection sampling, preference optimization, and RLVR. To mitigate this issue, we introduce a simple yet effective data augmentation strategy and train a new generative reward model with substantially improved robustness. Our findings highlight the urgent need for more reliable LLM-based evaluation methods. We release our robust, general-domain reward model and its synthetic training data at https://huggingface.co/sarosavo/Master-RM and https://huggingface.co/datasets/sarosavo/Master-RM.
đź“– LLM Inference in Production
Everything you need to know about LLM inference
.dotfiles/claude/.claude/CLAUDE.md at main · citypaul/.dotfiles
My dotfiles. Contribute to citypaul/.dotfiles development by creating an account on GitHub.
Concise Reasoning via Reinforcement Learning
Despite significant advancements in large language models (LLMs), a major drawback of reasoning models is their enormous token usage, which increases computational cost, resource requirements, and response time. In this work, we revisit the core principles of reinforcement learning (RL) and, through mathematical analysis, demonstrate that the tendency to generate lengthy responses arises inherently from RL-based optimization during training. This finding questions the prevailing assumption that longer responses inherently improve reasoning accuracy. Instead, we uncover a natural correlation between conciseness and accuracy that has been largely overlooked. Moreover, we show that introducing a secondary phase of RL post-training, using a small set of problems and limited resources, can significantly reduce a model’s chain of thought while maintaining or even enhancing accuracy. Finally, we validate our conclusions through extensive experimental results.
Improve your prompts in the developer console
Today, we’re introducing the ability to improve prompts and manage examples directly in the Anthropic Console.
The Effect of Sampling Temperature on Problem Solving in Large Language Models
In this research study, we empirically investigate the effect of sampling temperature on the performance of Large Language Models (LLMs) on various problem-solving tasks. We created a multiple-choice question-and-answer (MCQA) exam by randomly sampling problems from standard LLM benchmarks. Then, we used nine popular LLMs with five prompt-engineering techniques to solve the MCQA problems while increasing the sampling temperature from 0.0 to 1.6. Despite anecdotal reports to the contrary, our empirical results indicate that changes in temperature from 0.0 to 1.0 do not have a statistically significant impact on LLM performance for problem-solving tasks. In addition, these results appear to generalize across LLMs, prompt-engineering techniques, and problem domains. All code, data, and supplemental materials are available on GitHub at: https://github.com/matthewrenze/jhu-llm-temperature
Can Large Language Models Reason?
What should we believe about the reasoning abilities of today’s large language models? As the headlines above illustrate, there’s a debate raging over whether these enormous pre-trained neural networks have achieved humanlike reasoning abilities, or whether their skills are in fact “a mirage.”
OpenAI Platform
Explore developer resources, tutorials, API docs, and dynamic examples to get the most out of OpenAI’s platform.
GitHub - huggingface/evaluation-guidebook
Contribute to huggingface/evaluation-guidebook development by creating an account on GitHub.