logo
๐Ÿ”’

Member Only Content

To access all features, please consider upgrading to full Membership.

AI Ecosystem Intelligence Explorer

3D
AI Detection
AI Fundamentals

21 of 186 articles

Why Iโ€™m Betting Against AI Agents in 2025 (Despite Building Them)

Iโ€™ve built 12+ production AI agent systems across development, DevOps, and data operations. Hereโ€™s why the current hype around autonomous agents is mathematically impossible and what actually works in production.

Business
AI Fundamentals
 
7/20/2025

๐Ÿ“– LLM Inference in Production

Everything you need to know about LLM inference

LLM
Prompting
Applied AI
AI Fundamentals
 
7/11/2025

We Found Something That Shouldn't Exist | Derrick Hodge

We Found Something That Shouldn't Exist ๐—ง๐—ต๐—ฒ ๐—”๐—œ ๐—ณ๐—ถ๐—ฒ๐—น๐—ฑ ๐—ฟ๐˜‚๐—ป๐˜€ ๐—ผ๐—ป ๐—ฎ ๐—ฐ๐—ผ๐—ฟ๐—ฒ ๐—ฏ๐—ฒ๐—น๐—ถ๐—ฒ๐—ณ: That intelligence in large language models is evenly distributed across all parameters. Recent research (arXiv:2505.24832) estimates models store ~3.6 bits per parameter, implying memory spreads layer by layer, weight by weight. The dominant belief follows: ๐—ถ๐—ป๐˜๐—ฒ๐—น๐—น๐—ถ๐—ด๐—ฒ๐—ป๐—ฐ๐—ฒ ๐˜€๐—ฐ๐—ฎ๐—น๐—ฒ๐˜€ ๐—น๐—ถ๐—ป๐—ฒ๐—ฎ๐—ฟ๐—น๐˜† ๐˜„๐—ถ๐˜๐—ต ๐˜€๐—ถ๐˜‡๐—ฒ. But this assumes each parameter contributes equally to learning. Thatโ€™s where ๐—™๐—ถ๐˜€๐—ต๐—ฒ๐—ฟ ๐—œ๐—ป๐—ณ๐—ผ๐—ฟ๐—บ๐—ฎ๐˜๐—ถ๐—ผ๐—ป becomes critical. >> ๐˜๐˜ช๐˜ด๐˜ฉ๐˜ฆ๐˜ณ ๐˜๐˜ฏ๐˜ง๐˜ฐ๐˜ณ๐˜ฎ๐˜ข๐˜ต๐˜ช๐˜ฐ๐˜ฏ ๐˜ฎ๐˜ฆ๐˜ข๐˜ด๐˜ถ๐˜ณ๐˜ฆ๐˜ด ๐˜ฉ๐˜ฐ๐˜ธ ๐˜ด๐˜ฆ๐˜ฏ๐˜ด๐˜ช๐˜ต๐˜ช๐˜ท๐˜ฆ ๐˜ฑ๐˜ณ๐˜ฆ๐˜ฅ๐˜ช๐˜ค๐˜ต๐˜ช๐˜ฐ๐˜ฏ๐˜ด ๐˜ข๐˜ณ๐˜ฆ ๐˜ต๐˜ฐ ๐˜ฑ๐˜ฆ๐˜ณ๐˜ต๐˜ถ๐˜ณ๐˜ฃ๐˜ข๐˜ต๐˜ช๐˜ฐ๐˜ฏ๐˜ด ๐˜ช๐˜ฏ ๐˜ข ๐˜ด๐˜ช๐˜ฏ๐˜จ๐˜ญ๐˜ฆ ๐˜ฑ๐˜ข๐˜ณ๐˜ข๐˜ฎ๐˜ฆ๐˜ต๐˜ฆ๐˜ณ. ๐—” ๐—ต๐—ถ๐—ด๐—ต-๐—™๐—ถ๐˜€๐—ต๐—ฒ๐—ฟ ๐—ฝ๐—ฎ๐—ฟ๐—ฎ๐—บ๐—ฒ๐˜๐—ฒ๐—ฟ isnโ€™t storing a bit. Itโ€™s controlling behavior. When we analyzed ๐—ค๐˜„๐—ฒ๐—ป๐Ÿฎ.๐Ÿฑ-๐Ÿฌ.๐Ÿฑ๐—•, that belief collapsed. >> ๐Ÿต๐Ÿฐ.๐Ÿฏ% ๐—ผ๐—ณ ๐˜๐—ต๐—ฒ ๐˜๐—ผ๐˜๐—ฎ๐—น ๐—™๐—ถ๐˜€๐—ต๐—ฒ๐—ฟ ๐—œ๐—ป๐—ณ๐—ผ๐—ฟ๐—บ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—ถ๐˜€ ๐—ฐ๐—ผ๐—ป๐—ฐ๐—ฒ๐—ป๐˜๐—ฟ๐—ฎ๐˜๐—ฒ๐—ฑ ๐—ถ๐—ป ๐—ท๐˜‚๐˜€๐˜ ๐˜๐—ต๐—ฟ๐—ฒ๐—ฒ ๐˜„๐—ฒ๐—ถ๐—ด๐—ต๐˜๐˜€. Not three layers. Not three matrices. Three individual scalars, all in early and late mlp.down_proj layers. They donโ€™t look special. But they behave like computational black holes: >> ๐˜›๐˜ฉ๐˜ฆ๐˜บ ๐˜ข๐˜ฃ๐˜ด๐˜ฐ๐˜ณ๐˜ฃ ๐˜ฆ๐˜ฏ๐˜ต๐˜ณ๐˜ฐ๐˜ฑ๐˜บ, ๐˜ณ๐˜ข๐˜ฅ๐˜ช๐˜ข๐˜ต๐˜ฆ ๐˜ค๐˜ฐ๐˜ฉ๐˜ฆ๐˜ณ๐˜ฆ๐˜ฏ๐˜ต ๐˜ด๐˜ช๐˜จ๐˜ฏ๐˜ข๐˜ญ๐˜ด ๐˜ต๐˜ฉ๐˜ณ๐˜ฐ๐˜ถ๐˜จ๐˜ฉ ๐˜ด๐˜ฌ๐˜ช๐˜ฑ ๐˜ค๐˜ฐ๐˜ฏ๐˜ฏ๐˜ฆ๐˜ค๐˜ต๐˜ช๐˜ฐ๐˜ฏ๐˜ด, ๐˜ข๐˜ฏ๐˜ฅ ๐˜ค๐˜ฐ๐˜ฎ๐˜ฑ๐˜ณ๐˜ฆ๐˜ด๐˜ด ๐˜ณ๐˜ฆ๐˜ด๐˜ช๐˜ฅ๐˜ถ๐˜ข๐˜ญ ๐˜ญ๐˜ฐ๐˜ด๐˜ด ๐˜ช๐˜ฏ๐˜ต๐˜ฐ ๐˜ด๐˜ฆ๐˜ฎ๐˜ข๐˜ฏ๐˜ต๐˜ช๐˜ค ๐˜ข๐˜ต๐˜ต๐˜ณ๐˜ข๐˜ค๐˜ต๐˜ฐ๐˜ณ๐˜ด. These weights arenโ€™t just informative, theyโ€™re irreducible. Remove one and the model collapses. This aligns with "๐—ง๐—ต๐—ฒ ๐—ฆ๐˜‚๐—ฝ๐—ฒ๐—ฟ ๐—ช๐—ฒ๐—ถ๐—ด๐—ต๐˜ ๐—ถ๐—ป ๐—Ÿ๐—ฎ๐—ฟ๐—ด๐—ฒ ๐—Ÿ๐—ฎ๐—ป๐—ด๐˜‚๐—ฎ๐—ด๐—ฒ ๐— ๐—ผ๐—ฑ๐—ฒ๐—น๐˜€" (arXiv:2311.17035), which showed that pruning a single super weight can destroy more capability than removing thousands. ๐—•๐—น๐—ฎ๐—ฐ๐—ธ ๐—›๐—ผ๐—น๐—ฒ ๐——๐˜†๐—ป๐—ฎ๐—บ๐—ถ๐—ฐ๐˜€ These weights arenโ€™t memorizing or generalizing. They anchor the transformer like singularities in curved space. ๐—›๐—ฒ๐—ฎ๐˜ ๐—ฆ๐—ถ๐—ป๐—ธ: Absorb gradient energy ๐—˜๐—ป๐˜๐—ฟ๐—ผ๐—ฝ๐˜† ๐—ฃ๐˜‚๐—บ๐—ฝ: Radiate structured activation ๐—š๐—ฟ๐—ฎ๐˜ƒ๐—ถ๐˜๐˜† ๐—ช๐—ฒ๐—น๐—น: Network funnels signal into them ๐—›๐—ผ๐—ฟ๐—ถ๐˜‡๐—ผ๐—ป: Cross it, collapse is irreversible โœ“ Heat Sink: T(ฮธโ‚›) โ†’ 0 โœ“ Entropy Pump: S(ฮธโ‚›) โ†’ min,๐“˜_F(ฮธโ‚›) โ†’ max โœ“ Radiator: A_skip(ฮธโ‚›) โ‰ซ 0 โœ“ Collapse: Ablate(ฮธโ‚›) โ‡’ ฮ”๐“› โ†‘โ†‘ > > ๐˜๐˜ฏ๐˜ต๐˜ฆ๐˜ญ๐˜ญ๐˜ช๐˜จ๐˜ฆ๐˜ฏ๐˜ค๐˜ฆ ๐˜ฅ๐˜ฐ๐˜ฆ๐˜ด๐˜ฏโ€™๐˜ต ๐˜จ๐˜ฆ๐˜ฏ๐˜ฆ๐˜ณ๐˜ข๐˜ญ๐˜ช๐˜ป๐˜ฆ ๐˜ฃ๐˜บ ๐˜ฅ๐˜ช๐˜ง๐˜ง๐˜ถ๐˜ด๐˜ช๐˜ฐ๐˜ฏ. ๐˜๐˜ต ๐˜ค๐˜ฐ๐˜ฏ๐˜ฅ๐˜ฆ๐˜ฏ๐˜ด๐˜ฆ๐˜ด, ๐˜จ๐˜ณ๐˜ข๐˜ท๐˜ช๐˜ต๐˜ข๐˜ต๐˜ช๐˜ฐ๐˜ฏ๐˜ข๐˜ญ๐˜ญ๐˜บ, ๐˜ช๐˜ฏ๐˜ต๐˜ฐ ๐˜ข ๐˜ง๐˜ฆ๐˜ธ ๐˜ถ๐˜ญ๐˜ต๐˜ณ๐˜ข-๐˜ด๐˜ต๐˜ข๐˜ฃ๐˜ญ๐˜ฆ ๐˜ข๐˜ต๐˜ต๐˜ณ๐˜ข๐˜ค๐˜ต๐˜ฐ๐˜ณ๐˜ด ๐˜ต๐˜ฉ๐˜ข๐˜ต ๐˜ฆ๐˜ฏ๐˜ค๐˜ฐ๐˜ฅ๐˜ฆ ๐˜ต๐˜ฉ๐˜ฆ ๐˜ฏ๐˜ฆ๐˜ต๐˜ธ๐˜ฐ๐˜ณ๐˜ฌโ€™๐˜ด ๐˜ญ๐˜ฐ๐˜ด๐˜ด ๐˜ค๐˜ฐ๐˜ณ๐˜ณ๐˜ฆ๐˜ค๐˜ต๐˜ช๐˜ฐ๐˜ฏ ๐˜ค๐˜ฐ๐˜ฅ๐˜ฆ. ๐—ช๐—ต๐—ฎ๐˜ ๐˜๐—ต๐—ถ๐˜€ ๐—ฐ๐—ต๐—ฎ๐—ป๐—ด๐—ฒ๐˜€? โœ“ If 94.3% of capability can live in 3 weights: Scaling laws break โœ“ Compression must focus on thermodynamic structure, not parameter count. โœ“ Alignment may depend on just a few attractors. โ€œ๐— ๐—ฒ๐—บ๐—ผ๐—ฟ๐—ถ๐˜‡๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐˜ƒ๐˜€. ๐—ด๐—ฒ๐—ป๐—ฒ๐—ฟ๐—ฎ๐—น๐—ถ๐˜‡๐—ฎ๐˜๐—ถ๐—ผ๐—ปโ€ isnโ€™t the right debate anymore. This is computational physics and it's happening in weight space. | 91 comments on LinkedIn

AI Fundamentals
 
6/24/2025

Sparse Representation and Construction for High-Resolution 3D Shapes Modeling

Sparc3D: Sparse Representation and Construction for High-Resolution 3D Shapes Modeling

3D
 
6/22/2025

AI Responses May Include Mistakes

The other day I wanted to look up a specific IBM PS/2 model, a circa 1992 PS/2 Server system. So I punched the model into Google, and got this:

Harm and Risk
AI Fundamentals
 
5/31/2025

Wan2.1 14B 480p I2V LoRAs - a Remade-AI Collection

A collection of Remadeโ€™s Wan2.1 14B 480p I2V LoRAs

3D
Applied AI
 
5/28/2025

Limit of RLVR

Reasoning LLMs Are Just Efficient Samplers: RL Training Elicits No Transcending Capacity

LLM
AI Fundamentals
 
5/28/2025

Unlearning or Obfuscating? Jogging the Memory of Unlearned LLMs via Benign Relearning

Machine unlearning is a promising approach to mitigate undesirable memorization of training data in ML models. In this post, we will discuss our work (which appeared at ICLR 2025) demonstrating that existing approaches for unlearning in LLMs are surprisingly susceptible to a simple set of benign rel

AI Fundamentals
 
5/25/2025

Sketch2Anim: Towards Transferring Sketch Storyboards into 3D Animation

Sketch2Anim: Towards Transferring Sketch Storyboards into 3D Animation

3D
Arts & Creative Industries
 
5/19/2025
Members Only
Members Only
Members Only
Members Only
Members Only
Members Only
Members Only
Members Only
Members Only
Members Only
Members Only
Members Only